
STUDENT FORUM OF FMCAD’19, SAN JOSE, CALIFORNIA, USA, OCTOBER 2019 1

Floating Point Debugging via Basic Block Tracing
Saeed Taheri, Ganesh Gopalakrishnan

School of Computing
University of Utah

Salt Lake City, Utah
{staheri,ganesh}@cs.utah.edu

Abstract—Complex numerical programs are widely used in a
variety of platforms and processors. Heterogeneity of compilers
and architectures often cause inconsistencies in producing deter-
ministic results, especially in complex numerical code bases. Thus
root cause analysis of errors and failures of such systems is badly
needed. We have been developing frameworks to efficiently obtain
insight about program dynamic behavior towards failure root
cause. In this paper, we introduce dynamic basic block tracing
and propose ideas about analyzing the collected traces towards
locating the source of floating-point bugs.

Index Terms—debugging, floating point, basic block, tracing

I. COMPILER INDUCING FLOATING POINT VARIABILITY

Important high performance computing (HPC) applica-
tions are long-lived, and must be migrated across plat-
forms and compilers, and also their optimization levels
must be changed to gain performance. Unfortunately, these
changes often change the computed results, and are even
known to lead to unexpected deadlocks [1]. As another
example, a dot product over two arrays of float num-
bers (listing 1) produces 16877216 when compiled with
g++ -O2 and 16877222 when compiled with g++ -O3
-funsafe-math-optimizations -msse2.

float dot(float* x, float* y, int n) {
float sum = 0.0;
for (int i = 0; i < n; i++) {
sum += x[i] * y[i];

}
return sum;

}

main(argc, argv) {
float x[8] {16777216.0f, 1.f ,1.f ,1.f ,1e5f,1.f,1.f,1.f};
float y[8] {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
std::cout << dot(x, y, 8) << std::endl;

}

Listing 1: Dot Product

Such answer changes are often triggered by the introduction
of new instructions (e.g., fused multiply add), vectorization
(that can change the order of accumulation of results), or even
the selection of new library bindings by a compiler. Efficiently
root causing and correcting such behavioral changes is, unfor-
tunately, an unsolved problem.

Related work has studied compiler debugging, however
in the integer space [2]. Other works have supported the
formal analysis of floating-point operations at the LLVM[3]
level. These efforts do not directly address errors discovered
upon porting or optimizing code differently. Recent work has

successfully demonstrated the root-causing of floating-point
variability using bisection based testing [4]. Although such
technique have been shown to work in practice, it can be
time consuming. Also, significant differences in the compiled
floating-point library may get overlooked.

In this work, we propose a new approach for solving such
challenges with the goal of finding the point at which the
control flow of an application diverges under two compilations.
The basic idea is to mine binary traces of executions using
binary instrumentation, and then to analyze such traces across
two different compilations. We have developed a facility to
conduct Dynamic Binary Instrumentation and capture the
sequence of executed basic block traces. An important re-
quirement is to reduce overheads. In our work, the traced
sequences are incrementally compressed on-the-fly, resulting
in compact trace files with minimal overhead (cf. Section
II). After program termination, traces are decompressed and
represented in the form of control-flow graphs (CFG), with
an abstraction of basic blocks as graph nodes. Each CFG is a
summary representative of the floating-point behavior of the
program (or a specific function). Applying Formal Concept
Analysis (FCA)[5] techniques, our prior work has shown that
it is possible to find the critical point of divergence in CFGs
across two compilations(cf. Section III).

II. BASIC BLOCK TRACING

A natural and field-proven approach for debugging is to
capture detailed execution traces and compare them against
corresponding traces from a base run. Dynamic Binary In-
strumentation (DBI) frameworks had been used widely in
performance analyzer and debugger tools [6]. In dynamic
binary instrumentation, code behavior can be monitored at
runtime, making it possible to handle dynamically generated
and even self-modifying code, or the specific libraries chosen.

In our previous work [7], We have introduced ParLOT, a
dynamic tracing tool that efficiently collects whole-program
function calls and returns. The traces are compressed incre-
mentally on-the-fly using a novel compression scheme we have
developed. Inspired by this experience, we propose the use of
Intel Pin [8] to instrument the binary of target applications,
and efficiently track the execution of basic blocks—in effect
building basic block traces.

We still represent the program execution as a sequence of
symbols, with each basic block summarized via a unique ID.
The ParLOT approach to compression thus can be made to



STUDENT FORUM OF FMCAD’19, SAN JOSE, CALIFORNIA, USA, OCTOBER 2019 2

Table I: MFEM Basic Blocks

Trace Length Instrumented
Blocks

Executed
Blocks

Whole Program MFEM 1,138,962,074 13550 11426
MFEM-X 1,155,842,436 13577 11445

addMult-a-AAt
MFEM 1,843,200 22 18

MFEM-X 1,843,200 19 15

DenseMatrix-Invert
MFEM 855,040 96 73

MFEM-X 880,640 91 71

Table II: Instruction Sets

SSE DATA SSE ARITH SSE OTHER SSE2 DATA
SSE2 ARITH SSE2 OTHER FP DATA FP ARITH
FP OTHER AVX AVX2 FMA

work for basic blocks. Table I presents statistics of our initial
experiments on a specific test contained in MFEM, a finite el-
ement library [9]. MFEM-X refers to a build of MFEM which
has been compiled with a set of flags that caused variability
of the final answer. Functions DenseMatrix-Invert and
addMult-a-AAt are flagged by FLiT-Bisect [4] as the root
cause of answer variations. However, FLiT does not help
diagnose why these functions differed in their behavior. Our
proposed work will be directed at such detailed analysis.

The content of each basic block (i.e., sequence of instruc-
tions) is stored in a file at instrumentation time as info file. The
compelete or partial CFG of basic blocks can be constructed
from the trace and labeled by the information of info file.
For example, figure 1 shows the CFG of basic blocks of
function addMult-a-AAt where each node is labeled as
<Function>.<Last instruction of the Basic Block>.<Floating
Point instruction bitvector>. Each element of the bit vector
corresponds to a set of instructions categorized based on
the interesting floating point instructions. The value of each
element shows the frequency of appearance of floating-point
instructions within each category (table II).

III. RESEARCH PLANS

In our recently accepted tool [10], we have used Formal
Concept Analysis [5] techniques to narrow down the search
space from thousands of concurrent traces into just a few

Figure 1: CFG of addMult-a-AAt

start

AddMult_a_AAt.jle
0.0.0.0.0.0.0.0.0.1.0.0

1

AddMult_a_AAt.jnz
0.0.0.0.0.0.0.0.0.0.0.1

40960

122880

AddMult_a_AAt.jz
0.0.0.0.0.0.0.0.0.0.0.1

163840

AddMult_a_AAt.jnz
0.0.0.0.0.0.0.0.0.0.0.2

245760

40959

122880

“suspicious” traces. The approach is to convert the context of
search space into a formal concept and inject each concept to a
concept lattice that provides a full pair-wise similarity matrix
in linear time. Within each trace, long sequences of trace
entries are converted to loss-less Nested Loop Representation
(NLR) for better readability. Currently, we are developing the
existing FCA framework to cover basic block traces. Then
by extracting attributes from each function, we pursue the
goal of finding which function’s behavior(w.r.t. floating-point
operations) have been changed the most after re-compilation
with different flags.

Also, the NLR implementation getting completely paral-
lelized and gaining up to 20x speedup. Using NLR to sum-
marize 1.3 billion-long traces (table I - row Whole-Program)
into its minimal NLR representation would make trace analysis
much feasible. Inspired by [11], we are also studying possible
approaches to use tools like MonoSat[12] to infer from basic
block bit-vectors.

REFERENCES

[1] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Preliminary
experiences with the uintah framework on intel xeon phi and stampede,”
in Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery, ser. XSEDE ’13. New
York, NY, USA: ACM, 2013, pp. 48:1–48:8.

[2] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283–294.

[3] D. Menendez, S. Nagarakatte, and A. Gupta, “Alive-fp: Automated
verification of floating point based peephole optimizations in llvm,” in
International Static Analysis Symposium. Springer, 2016, pp. 317–337.

[4] M. Bentley, I. Briggs, G. Gopalakrishnan, D. H. Ahn, I. Laguna, G. L.
Lee, and H. E. Jones, “Multi-level analysis of compiler-induced variabil-
ity and performance tradeoffs,” in Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’19. New York, NY, USA: ACM, 2019, pp. 61–72.

[5] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foun-
dations, 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1997.

[6] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall,
“The paradyn parallel performance measurement tool,” IEEE Computer,
vol. 28, no. 11, pp. 37–46, 1995.

[7] S. Taheri, S. Devale, G. Gopalakrishnan, and M. Burtscher, “ParLOT:
Efficient whole-program call tracing for HPC applications,” in Program-
ming and Performance Visualization Tools - International Workshops,
ESPT 2017 and VPA 2017, Denver, CO, USA, November 12 and 17,
2017, and ESPT 2018 and VPA 2018, Dallas, TX, USA, November 16
and 11, 2018, Revised Selected Papers, 2018, pp. 162–184.

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 190–200.

[9] T. Kolev and V. Dobrev, “Mfem: Modular finite element methods
library,” jun 2010.

[10] S. Taheri, I. Briggs, M. Burtscher, and G. Gopalakrishnan, “Difftrace:
Efficient whole-program trace analysis and diffing for debugging,”
in Proceeding of IEEE Cluster Conference, 2019, Albuquerque, NM,
USA, September, 2019, Under publication, 2019. [Online]. Available:
https://staheri.github.io/files/IEEE19-diffTrace.pdf

[11] J. R. Burch and D. L. Dill, “Automatic verification of pipelined mi-
croprocessor control,” in Computer Aided Verification, D. L. Dill, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 68–80.

[12] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu, “SAT modulo
monotonic theories,” CoRR, vol. abs/1406.0043, 2014. [Online].
Available: http://arxiv.org/abs/1406.0043


